Scaling Limits of the Uniform Spanning Tree and Loop-erased Random Walk on Finite Graphs

نویسندگان

  • YUVAL PERES
  • DAVID REVELLE
چکیده

Let x and y be chosen uniformly in a graph G. We find the limiting distribution of the length of a loop-erased random walk from x to y on a large class of graphs that include the torus Zn for d ≥ 5. Moreover, on this family of graphs we show that a suitably normalized finite-dimensional scaling limit of the uniform spanning tree is a Brownian continuum random tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The loop - erased random walk and the uniform spanning tree on the four - dimensional discrete torus

Let x and y be points chosen uniformly at random from Z4n, the four-dimensional discrete torus with side length n. We show that the length of the loop-erased random walk from x to y is of order n(logn), resolving a conjecture of Benjamini and Kozma. We also show that the scaling limit of the uniform spanning tree on Z4n is the Brownian continuum random tree of Aldous. Our proofs use the techniq...

متن کامل

Convergence of the Length of the Loop-erased Random Walk on Finite Graphs to the Rayleigh Process

Let (Gn) ∞ n=1 be a sequence of finite graphs, and let Yt be the length of a loop-erased random walk on Gn after t steps. We show that for a large family of sequences of finite graphs, which includes the case in which Gn is the d-dimensional torus of size-length n for d ≥ 4, the process (Yt) ∞ t=0, suitably normalized, converges to the Rayleigh process introduced by Evans, Pitman, and Winter. O...

متن کامل

Loop-erased Random Walk on Finite Graphs and the Rayleigh Process

Let (Gn) ∞ n=1 be a sequence of finite graphs, and let Yt be the length of a loop-erased random walk on Gn after t steps. We show that for a large family of sequences of finite graphs, which includes the case in which Gn is the d-dimensional torus of size-length n for d ≥ 4, the process (Yt) ∞ t=0, suitably normalized, converges to the Rayleigh process introduced by Evans, Pitman, and Winter. O...

متن کامل

Uniform spanning trees on Sierpiński graphs

We study spanning trees on Sierpiński graphs (i.e., finite approximations to the Sierpiński gasket) that are chosen uniformly at random. We construct a joint probability space for uniform spanning trees on every finite Sierpiński graph and show that this construction gives rise to a multi-type Galton-Watson tree. We derive a number of structural results, for instance on the degree distribution....

متن کامل

Infinite volume limits of high-dimensional sandpile models

We study the Abelian sandpile model on Z. In d ≥ 3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004